Memetic algorithms outperform evolutionary algorithms in multimodal optimisation

Memetic algorithms integrate local search into an evolutionary algorithm to combine the advantages of rapid exploitation and global optimisation. We provide a rigorous runtime analysis of memetic algorithms on the Hurdle problem, a landscape class of tunable difficulty with a “big valley structure”,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2020-10, Vol.287, p.103345, Article 103345
Hauptverfasser: Nguyen, Phan Trung Hai, Sudholt, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Memetic algorithms integrate local search into an evolutionary algorithm to combine the advantages of rapid exploitation and global optimisation. We provide a rigorous runtime analysis of memetic algorithms on the Hurdle problem, a landscape class of tunable difficulty with a “big valley structure”, a characteristic feature of many hard combinatorial optimisation problems. A parameter called hurdle width describes the length of fitness valleys that need to be overcome. We show that the expected runtime of plain evolutionary algorithms like the (1+1) EA increases steeply with the hurdle width, yielding superpolynomial times to find the optimum, whereas a simple memetic algorithm, (1+1) MA, only needs polynomial expected time. Surprisingly, while increasing the hurdle width makes the problem harder for evolutionary algorithms, it becomes easier for memetic algorithms. We further give the first rigorous proof that crossover can decrease the expected runtime in memetic algorithms. A (2+1) MA using mutation, crossover and local search outperforms any other combination of these operators. Our results demonstrate the power of memetic algorithms for problems with big valley structures and the benefits of hybridising multiple search operators.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2020.103345