Studies on the removal of phosphate in water through adsorption using a novel Zn-MOF and its derived materials
A novel zinc-based metal–organic framework, {[Zn3(atz)2(pda)2]·2(H2O)}n (Zn-MOF; Hatz is 5-aminote-1H-terazole; H2pda is malonic acid), was prepared using the solvothermal method. Carbonization of the prepared Zn-MOF was conducted under elevated temperatures to investigate its phosphate adsorption p...
Gespeichert in:
Veröffentlicht in: | Arabian journal of chemistry 2022-08, Vol.15 (8), p.103955, Article 103955 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel zinc-based metal–organic framework, {[Zn3(atz)2(pda)2]·2(H2O)}n (Zn-MOF; Hatz is 5-aminote-1H-terazole; H2pda is malonic acid), was prepared using the solvothermal method. Carbonization of the prepared Zn-MOF was conducted under elevated temperatures to investigate its phosphate adsorption performance. Through pre-adsorption experiments, the optimal carbonization temperature of 500 °C was determined, yielding Zn-MOF-500. Besides, multiple characterization methods were used to analyze the properties of Zn-MOF and Zn-MOF-500 materials before and after the adsorption of phosphate ions. The results showed that the BET surface area of Zn-MOF-500 was 18.57 m2/g, which was 16.37 times larger than that of the BET surface area of Zn-MOF. At 25 °C, Zn-MOF and Zn-MOF-500 exhibited an adsorption capacity of 123.44 and 226.07 mg/g, respectively. Based on the adsorption isotherms and the adsorption kinetics, the adsorption of PO43- occurs via monolayer. X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) analysis showed that P was adsorbed on Zn-MOF and Zn-MOF-500 as the zinc hydrogen phosphate and zinc phosphate ions, respectively. |
---|---|
ISSN: | 1878-5352 1878-5379 |
DOI: | 10.1016/j.arabjc.2022.103955 |