Insights into the post-combustion CO2 capture performance of zinc-based zeolitic imidazolate framework (ZIF8)-derived nanocomposites

[Display omitted] •A post-combustion CO2 capture adsorbent is made using ZIF8 as the sole precursor.•TGA studies reveal high gravimetric adsorption capacity (∼10 wt% at 30 °C, 1 bar)•BET studies reveal high volumetric adsorption capacity (3.13 mmol/g at 30 °C, 1 bar).•Adsorption isotherms fit best t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced powder technology : the international journal of the Society of Powder Technology, Japan Japan, 2025-01, Vol.36 (1), p.104728, Article 104728
Hauptverfasser: Sana, Fathima T.K., Ghosh, Anamika, Vijayan, C., Ramaprabhu, Sundara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •A post-combustion CO2 capture adsorbent is made using ZIF8 as the sole precursor.•TGA studies reveal high gravimetric adsorption capacity (∼10 wt% at 30 °C, 1 bar)•BET studies reveal high volumetric adsorption capacity (3.13 mmol/g at 30 °C, 1 bar).•Adsorption isotherms fit best to the Redlich-Peterson model.•Remarkable performance in simulated flue gas. We report carbon-zinc oxide (C/ZnO) nanocomposites obtained by a simple, scalable, and cost-effective one-step pyrolysis of a zinc-based zeolitic imidazolate framework (ZIF8) for post-combustion carbon dioxide (CO2) capture. The prepared nanocomposites are thoroughly analyzed by different characterization techniques. The CO2 adsorption–desorption studies performed using thermogravimetric analyzer (TGA) reveal remarkable CO2 adsorption capacity (∼10 wt% at 30 °C, 1 bar) and excellent CO2/N2 selectivity. The low-pressure CO2 uptake capacities measured using Brunauer-Emmett-Teller (BET) analyzer corroborate the TGA results. The best sample exhibits an uptake of 3.13 mmol/g at 30 °C, 1 bar. The experimental isotherms obtained using TGA and BET are fitted using suitable kinetic and adsorption models, respectively, to obtain insights into the underlying adsorption mechanisms. The isosteric enthalpy of adsorption calculated from the Virial analysis of the isotherms confirms the physisorption nature. Excellent CO2 uptake values are also observed in simulated flue gas environments. Additionally, the factors influencing the CO2 adsorption in these nanocomposites are identified by correlating the physical characterization results with the CO2 uptake studies. It is inferred that the amorphous carbon in the nanocomposite determines the adsorption capacity and selectivity, whereas the residual ZnO in it controls the adsorption capacity at 0.15 bar and kinetics.
ISSN:0921-8831
DOI:10.1016/j.apt.2024.104728