Electrothermal toluene oxidation by utilizing Joule heat from Pd/FeCrAl electrified metallic monolith catalyst

[Display omitted] •An electrothermal toluene oxidation mode for complete decomposition of VOCs.•Achieve 90 % toluene conversion at much lower temperature of 103 ℃.•Reduce energy consumption more than 50 times via internal Joule heating.•Convenient electron transfer between DC power and reaction acti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2024-06, Vol.658, p.159827, Article 159827
Hauptverfasser: Li, Yongfeng, Zhang, Xiaomian, Liang, Qiyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •An electrothermal toluene oxidation mode for complete decomposition of VOCs.•Achieve 90 % toluene conversion at much lower temperature of 103 ℃.•Reduce energy consumption more than 50 times via internal Joule heating.•Convenient electron transfer between DC power and reaction active sites. An electrified metallic monolith catalyst of direct growing palladium active component on FeCrAl strip substrate (Pd/FeCrAl) via an in-situ nucleation and plating process was prepared, and investigated in a special electrothermal toluene oxidation (ETO) mode reaction by direct connecting to an electric power supply for the internal Joule heating. This ETO reaction mode could promote the Pd/FeCrAl catalyst to achieve 90 % toluene conversion at much lower reaction temperature of 103 °C under an input current of 3.0 A, and greatly reduce the energy consumption more than 50 times, well beyond the performance of catalyst in the conventional toluene oxidation mode reaction. And the intimate contact of FeCrAl substrate and Pd active layer in catalyst is favorable for the convenient electron transfer between electric power supply and reaction active sites, which can significantly enhance the content and electron transformation of lattice oxygen, and the synergistic effect of Pd0-PdO active sites.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2024.159827