Field-based assessment of the effect of conventional and biodegradable plastic mulch film on nitrogen partitioning, soil microbial diversity, and maize biomass

In an agricultural context, the use of conventional low-density polyethylene (LDPE) and biodegradable plastic mulch film has been actively promoted, however, the effects on physical and biochemical soil properties, crop growth dynamics, yield, and nutrient cycling of conventional and biodegradable m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soil ecology : a section of Agriculture, ecosystems & environment ecosystems & environment, 2024-10, Vol.202, p.105595, Article 105595
Hauptverfasser: Graf, Martine, Greenfield, Lucy M., Reay, Michaela K., Bargiela, Rafael, Golyshin, Peter N., Evershed, Richard P., Lloyd, Charlotte E.M., Williams, Gwion B., Chadwick, David R., Jones, Davey L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an agricultural context, the use of conventional low-density polyethylene (LDPE) and biodegradable plastic mulch film has been actively promoted, however, the effects on physical and biochemical soil properties, crop growth dynamics, yield, and nutrient cycling of conventional and biodegradable mulch film use in a temperate climate remain largely undetermined. Here, we conducted a field experiment, exploring the effects of no mulch (control), conventional (LDPE), and biodegradable (PLA/PBAT) plastic mulch film on soil and crop (Zea mays L.) nitrogen (N) partitioning after application of 15N-labelled ammonium-nitrate fertiliser. Further, we also investigated the treatment effects on soil physical and biochemical properties (e.g., microbial diversity, compound-specific microbial 15N incorporation, N dynamics), plant development, as well as monitoring the biotic and abiotic degradation of the plastic mulch films. We found that conventional mulch film increased crop yield by 25 % and 15N uptake by 34 % compared to the control, simultaneously reducing 15N retention by 40 % in the topsoil (0–10 cm), but not affecting microbial N use efficiency and N transformation and incorporation into the protein pool. Biodegradable film application resulted in similar biomass (306 ± 14 g plant−1) to both control (275 ± 14 g plant−1) and conventional mulch (344 ± 20 g plant−1) treatments, but significantly reduced 15N crop uptake by 63 % compared to the conventional mulch film. We ascribe this to the accelerated mechanical breakdown and faster degradation of the biodegradable mulch film during the growing season. These findings suggest that current biodegradable plastic mulch film polymer blends may not be a suitable alternative to conventional mulch film in terms of short-term productivity and N use efficiency in a temperate climate for maize production. [Display omitted] •LDPE mulch film (MF) increased 15N plant uptake and reduced 15N soil retention.•PLA/PBAT MF decreased 15N soil retention but did not affect 15N plant uptake.•Neither MF affected soil microbial diversity and plant N use efficiency.•Neither MF affected the incorporation of 15N into soil microbial proteins.•LDPE increased plant biomass compared to the control and PLA/PBAT treatments.
ISSN:0929-1393
DOI:10.1016/j.apsoil.2024.105595