Do earthworms increase grass biomass production and phosphorus uptake under field conditions?
The key nutrient phosphorus (P) binds strongly to reactive soil particles, which makes it poorly available for plant uptake. In the search for sustainable ways to overcome a resulting P shortage, it has been shown that earthworms can increase the pool of plant available P and enhance plant P uptake...
Gespeichert in:
Veröffentlicht in: | Applied soil ecology : a section of Agriculture, ecosystems & environment ecosystems & environment, 2022-12, Vol.180, p.104598, Article 104598 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The key nutrient phosphorus (P) binds strongly to reactive soil particles, which makes it poorly available for plant uptake. In the search for sustainable ways to overcome a resulting P shortage, it has been shown that earthworms can increase the pool of plant available P and enhance plant P uptake under controlled (greenhouse) conditions. To validate these findings under field conditions and to study the effect of earthworm community composition, we conducted a mesocosm-field experiment on grassland. Mesocosms containing a sandy soil with a low P-status and communities of five earthworm species common to the Netherlands (Lumbricus rubellus, Aporrectodea caliginosa, Allolobophora chlorotica, Lumbricus terrestris and Aporrectodea longa; monocultures, three- or five-species mixtures and controls without earthworms) were installed in a field. Aboveground biomass production and P uptake of Lolium perenne were monitored for over two years. Earthworm community composition varied between the start and the end of the experiment, but multiple linear regression on the final earthworm communities yielded strong indications that earthworms increased both biomass production (R2adj = 0.52, p |
---|---|
ISSN: | 0929-1393 1873-0272 |
DOI: | 10.1016/j.apsoil.2022.104598 |