Motion controller for multi-joint robotic arm with deep cascade gated Bayesian broad learning system
Intelligent controllers based on the broad learning system can simplify the process of model parameter adjustment, finding wide applications in the motion control of multi-joint robotic arms. However, motion controllers for multi-joint robotic arms based on broad learning system exhibit insufficient...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2025-02, Vol.138, p.115792, Article 115792 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intelligent controllers based on the broad learning system can simplify the process of model parameter adjustment, finding wide applications in the motion control of multi-joint robotic arms. However, motion controllers for multi-joint robotic arms based on broad learning system exhibit insufficient precision and overlook the impact of joint motion commonalities on controller design. Therefore, this paper proposes a novel motion control strategy for a multi-joint robotic arm based on a deep cascade feature-enhancement gated Bayesian broad learning system. Firstly, the motion controller of the deep cascade feature-enhancement Bayesian broad learning system is constructed to enhance the robotic arm motion control precision. Secondly, an incremental node generation module with an attention-gated mechanism is constructed to capture the unique motion characteristics of the target joints, which is further combined with model generalization to simplify the motion control process of the multi-joint robotic arm. Finally, controller convergence is enhanced by combining it with the Lyapunov theory to constrain the learning parameters. Simulations and physical experiments are designed to verify the feasibility and superiority of the proposed motion control strategy. The results demonstrated that the strategy improved the accuracy of robotic arm motion control, with the root mean square error in position tracking reduced to 0.0019 rad. This represents a 93.39% reduction in error compared to existing techniques.
•A deep cascade gated Bayesian broad learning system motion controller is proposed.•The controller is applied to multi-joint robotic arm to improve the control accuracy.•The controller has parameter generation constraints to enhance control stability.•Simulations and experiments confirm the effectiveness of the proposed controller. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2024.115792 |