A hybrid model-data-driven framework for inverse load identification of interval structures based on physics-informed neural network and improved Kalman filter algorithm

Accurately capturing data on the external loads that large structural systems endure is crucial for improving the performance of energy equipment. This paper introduces a novel hybrid model-data-driven framework for the dynamic load identification of interval structures, which seamlessly combines fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2024-04, Vol.359, p.122740, Article 122740
Hauptverfasser: Liu, Yaru, Wang, Lei, Ng, Bing Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurately capturing data on the external loads that large structural systems endure is crucial for improving the performance of energy equipment. This paper introduces a novel hybrid model-data-driven framework for the dynamic load identification of interval structures, which seamlessly combines finite-element modeling with machine learning techniques. To address potential ill-posed issues in model-driven methods and the interpretability limitations of data-driven methods, we propose a physics-informed neural network. This neural network effectively inverts uncertain modal responses with low data requirements and high predictive performance high by integrating the underlying modal transformation equation into the loss function of a fully connected neural network. To identify the modal loads using predicted modal displacement/acceleration responses, we introduce a pioneering dynamics inversion method. This method modifies the traditional Kalman filter with an assumption of unknown inputs to reduce the sensitivity of load identification process to different noises. In addition, our approach incorporates a subinterval Chebyshev expansion method to adaptively determine the interval boundaries of external loads. The efficiency of the proposed method is assessed through two numerical examples and validated through comparative research against baseline methods. Our findings suggest that this approach enhances precision, robustness, and generalization in dynamic load identification, even when facing challenges such as limited training data, significant noise interference, and non-zero initial conditions. •A novel hybrid model-data-driven dynamic load identification method for interval structures is proposed.•A physics-informed neural network is established to inverse the uncertain modal responses effectively.•Two improved Kalman filter algorithms are developed to identify the modal loads at specified parameters.
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2024.122740