Controlled synthesis of hollow carbon ring incorporated g-C3N4 tubes for boosting photocatalytic H2O2 production
H2O2 production through solar-driven photocatalytic route has received increasing attention. Herein, a carbon ring incorporated hollow g-C3N4 tubes (CHCN) was successfully fabricated via a novel supramolecular self-assembly strategy, co-inducing by hydrogen bond and covalent bond. The optimum H2O2 y...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2023-11, Vol.337, p.122933, Article 122933 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | H2O2 production through solar-driven photocatalytic route has received increasing attention. Herein, a carbon ring incorporated hollow g-C3N4 tubes (CHCN) was successfully fabricated via a novel supramolecular self-assembly strategy, co-inducing by hydrogen bond and covalent bond. The optimum H2O2 yield over the CHCN-0.02 reached up to 1.58 mmol L−1 h−1 (AQE= 28.10%, 420 nm), which was 5.4 times significantly higher than that of bulk g-C3N4 (0.29 mmol L−1 h−1) under visible light irradiation. Experimental and density functional theory (DFT) calculations revealed that the CHCNs not only expedited the charge carrier transfer/separation but also favored molecular oxygen adsorption and regulated bandgap structure under the in-plane electronic field induced by continuous π-conjugated Cring, which boosted the ORR efficiency for photocatalytic H2O2 synthesis. The optimized CHCN catalyst demonstrated adequate hybrid ORR routes, consisting of a dominated selective one-step two-electron ORR pathway and highly efficient two-step single-electron ORR for H2O2 production. Therefore, this work not only provides a new strategy for an efficient H2O2 formation using a g-C3N4-based photocatalyst but also explores the functionary mechanism of the ORR process and enlightens the way to highly efficient H2O2 generation.
[Display omitted]
•Facile synthesis of carbon rings-g-C3N4 hollow tubes was achieved.•Intensified charge carriers transfer/separation across carbon rings-g-C3N4 heterojunctions.•Efficient oxygen reduction reaction was regulated by TP derived carbon rings.•Remarkable photocatalytic H2O2 generation by carbon rings-g-C3N4 hollow tubes was revealed. |
---|---|
ISSN: | 0926-3373 1873-3883 |
DOI: | 10.1016/j.apcatb.2023.122933 |