Unlocking efficient and robust ozone decomposition with CNT-confined manganese oxide via synergistic electronic modulation

Manganese oxides (MnO2)-based catalysts are prominent candidates for ozone elimination, which always bear the accumulation of the intermediate oxygen species and water, resulting in unsatisfactory catalytic efficiency. To overcome this critical defect, we propose carbon nanotubes confined MnO2 catal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2023-10, Vol.334, p.122788, Article 122788
Hauptverfasser: Liu, Bin, Yi, Ziran, Yang, Yunjun, Li, Yatai, Yang, Jingling, Zhu, Mingshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manganese oxides (MnO2)-based catalysts are prominent candidates for ozone elimination, which always bear the accumulation of the intermediate oxygen species and water, resulting in unsatisfactory catalytic efficiency. To overcome this critical defect, we propose carbon nanotubes confined MnO2 catalysts (MnO2-in-CNT) for efficient and stable ozone decomposition over a wide relative humidity range (RH, 15–90%). Strikingly, the catalyst exhibits an efficient and sustainable ozone conversion (98%) over 100 h under a gas hourly space velocity (GHSV) of 600,000 mL g−1 h−1 and RH of 15%, and durability under high RH (77% over 50 h, RH 70%), well beyond its unconfined analog and most reported works. This excellent catalytic performance can be attributed to the facilitated intermediate desorption on active sites and the confined structure alleviated the effect of water on inner MnO2. This discovery is expected to drive great progress in the applications of confined-structure catalysts for air purification. [Display omitted] •The MnO2-in-CNT catalyst exhibits 98% persistent ozone conversion over 100 h.•Reduced accumulation of intermediate-peroxide on MnO2-in-CNT was realized.•The confined structure alleviated the effect of water vapor on ozone conversion.
ISSN:0926-3373
1873-3883
DOI:10.1016/j.apcatb.2023.122788