Atomically Fe-doped MoS2−x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3

Electrocatalytic NO-to-NH3 conversion (NORR) provides an appealing route for both sustainable NH3 production and harmful NO abatement. Herein, we combine the strategies of atomic doping and vacancy engineering to design atomically Fe-doped and S-vacancy-rich MoS2 (Fe1/MoS2−x) as a highly efficient N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2023-05, Vol.324, p.122241, Article 122241
Hauptverfasser: Chen, Kai, Wang, Jiaxin, Kang, Jilong, Lu, Xubin, Zhao, Xiaolin, Chu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrocatalytic NO-to-NH3 conversion (NORR) provides an appealing route for both sustainable NH3 production and harmful NO abatement. Herein, we combine the strategies of atomic doping and vacancy engineering to design atomically Fe-doped and S-vacancy-rich MoS2 (Fe1/MoS2−x) as a highly efficient NORR catalyst, showing the maximum NH3-Faradaic efficiency of 82.5% and NH3 yield of 288.2 μmol h−1 cm−2 at − 0.6 V vs. RHE. Theoretical calculations unveil that Fe-Mo dual sites created on Fe1/MoS2−x can cooperatively activate NO and dissociate the NO bond, boost the protonation energetics and simultaneously suppress the competing hydrogen evolution, resulting in the significantly expedited NORR activity and selectivity. [Display omitted] •We develop atomically Fe-doped and S-vacancy-rich MoS2 (Fe1/MoS2−x) catalyst for NO electroreduction to NH3 (NORR).•Fe1/MoS2−x exhibits a high NH3 yield of 288.2 μmol h−1 cm−2 with an NH3-Faradaic efficiency of 82.5% at − 0.6 V vs. RHE.•Theoretical analyses reveal that Fe-Mo dual sites synergistically promote the protonation energetics and impede the HER.•This work highlights the combined atomic doping/vacancy engineering strategy to develop high-performance NORR catalysts.
ISSN:0926-3373
1873-3883
DOI:10.1016/j.apcatb.2022.122241