Bi-colored expansions of geometric theories
This paper concerns the study of expansions of models of a geometric theory T by a color predicate p, within the framework of the Fraïssé-Hrushovski construction method. For each α∈(0,1], we define a pre-dimension function δα on the class of Bi-colored models of T∀ and consider the subclass Kα+ cons...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 2025-02, Vol.176 (2), p.103525, Article 103525 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns the study of expansions of models of a geometric theory T by a color predicate p, within the framework of the Fraïssé-Hrushovski construction method. For each α∈(0,1], we define a pre-dimension function δα on the class of Bi-colored models of T∀ and consider the subclass Kα+ consisting of models with hereditary positive δα. We impose certain natural conditions on T that enable us to introduce a complete Π2-theory Tα for the rich models in Kα+. We show how the transfer of certain model-theoretic properties, such as NIP and strong-dependence, from T to Tα, depends on whether α is rational or irrational. |
---|---|
ISSN: | 0168-0072 |
DOI: | 10.1016/j.apal.2024.103525 |