Independence relations for exponential fields

We give four different independence relations on any exponential field. Each is a canonical independence relation on a suitable Abstract Elementary Class of exponential fields, showing that two of these are NSOP1-like and non-simple, a third is stable, and the fourth is the quasiminimal pregeometry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 2023-08, Vol.174 (8), p.103288, Article 103288
Hauptverfasser: Aslanyan, Vahagn, Henderson, Robert, Kamsma, Mark, Kirby, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give four different independence relations on any exponential field. Each is a canonical independence relation on a suitable Abstract Elementary Class of exponential fields, showing that two of these are NSOP1-like and non-simple, a third is stable, and the fourth is the quasiminimal pregeometry of Zilber's exponential fields, previously known to be stable (and uncountably categorical). We also characterise the fourth independence relation in terms of the third, strong independence.
ISSN:0168-0072
DOI:10.1016/j.apal.2023.103288