Convergent sequences in topological groups

We survey recent developments concerning the role of convergent sequences in topological groups. We present the Invariant Ideal Axiom and announce its effect on convergence properties in topological groups, in particular, the consistency of the fact that every countable sequential topological group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 2021-05, Vol.172 (5), p.102910, Article 102910
Hauptverfasser: Hrušák, Michael, Shibakov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We survey recent developments concerning the role of convergent sequences in topological groups. We present the Invariant Ideal Axiom and announce its effect on convergence properties in topological groups, in particular, the consistency of the fact that every countable sequential topological group is either metrizable or kω. We also outline a construction of a countably compact topological group without non-trivial convergence sequences using iterated ultrapowers of Bohr topology on a Boolean group from a selective ultrafilter and announce a related ZFC construction of such a group. We recall the main open questions in the area and formulate several new ones.
ISSN:0168-0072
DOI:10.1016/j.apal.2020.102910