The theory of ceers computes true arithmetic

We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 2020-08, Vol.171 (8), p.102811, Article 102811
Hauptverfasser: Andrews, Uri, Schweber, Noah, Sorbi, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the same for the structure of I-degrees in the dark, light, or complete structure. In each case, we show that there is an interpretable copy of (N,+,×).
ISSN:0168-0072
DOI:10.1016/j.apal.2020.102811