The theory of ceers computes true arithmetic
We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the sa...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 2020-08, Vol.171 (8), p.102811, Article 102811 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the same for the structure of I-degrees in the dark, light, or complete structure. In each case, we show that there is an interpretable copy of (N,+,×). |
---|---|
ISSN: | 0168-0072 |
DOI: | 10.1016/j.apal.2020.102811 |