Normalized solutions and bifurcation for fractional Schrödinger equation with linear potential

In the paper, we consider the existence of normalized solutions for following fractional Schrödinger equation (FSE)(−Δ)su+V(x)u=K(x)f(u)+λu,inRNwhere N≥2, s∈(0,1), λ∈R is a parameter and (−Δ)s is the fractional Laplacian operator. We prove existence of normalized solutions for equation (FSE) under h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2023-11, Vol.145, p.108731, Article 108731
Hauptverfasser: Dong, Xiaojing, Yu, Yuanyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, we consider the existence of normalized solutions for following fractional Schrödinger equation (FSE)(−Δ)su+V(x)u=K(x)f(u)+λu,inRNwhere N≥2, s∈(0,1), λ∈R is a parameter and (−Δ)s is the fractional Laplacian operator. We prove existence of normalized solutions for equation (FSE) under hypotheses on the potentials V and K. Moreover, we also obtain λ=0 is a bifurcation point.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2023.108731