Normalized solutions and bifurcation for fractional Schrödinger equation with linear potential
In the paper, we consider the existence of normalized solutions for following fractional Schrödinger equation (FSE)(−Δ)su+V(x)u=K(x)f(u)+λu,inRNwhere N≥2, s∈(0,1), λ∈R is a parameter and (−Δ)s is the fractional Laplacian operator. We prove existence of normalized solutions for equation (FSE) under h...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2023-11, Vol.145, p.108731, Article 108731 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, we consider the existence of normalized solutions for following fractional Schrödinger equation (FSE)(−Δ)su+V(x)u=K(x)f(u)+λu,inRNwhere N≥2, s∈(0,1), λ∈R is a parameter and (−Δ)s is the fractional Laplacian operator. We prove existence of normalized solutions for equation (FSE) under hypotheses on the potentials V and K. Moreover, we also obtain λ=0 is a bifurcation point. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2023.108731 |