Groundstates for magnetic Choquard equations with critical exponential growth

This paper is dedicated to show the existence of ground state solution for a magnetic Choquard equation with critical exponential growth. By introducing a Moser type function involving magnetic potential and applying analytical techniques, we surmount the obstacles brought from the magnetic potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2022-10, Vol.132, p.108153, Article 108153
Hauptverfasser: Wen, Lixi, Rădulescu, Vicenţiu D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is dedicated to show the existence of ground state solution for a magnetic Choquard equation with critical exponential growth. By introducing a Moser type function involving magnetic potential and applying analytical techniques, we surmount the obstacles brought from the magnetic potential which makes it a complex-valued problem and the critical exponential growth nonlinearity which makes it difficult to show the non-vanishing of Cerami sequence. Our methods can be applied to related magnetic elliptic equations.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2022.108153