A reproducing kernel method for nonlinear C-q-fractional IVPs
Here a scheme for solving the Caputo type q-fractional (C-q-fractional) initial value problems (IVPs) in reproducing kernel spaces is given. By the attribute of the q-fractional operator, we first convert the q-fractional differential problems into q-fractional Volterra integral problems. Then, we i...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2022-03, Vol.125, p.107751, Article 107751 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here a scheme for solving the Caputo type q-fractional (C-q-fractional) initial value problems (IVPs) in reproducing kernel spaces is given. By the attribute of the q-fractional operator, we first convert the q-fractional differential problems into q-fractional Volterra integral problems. Then, we implement the Quasi-Newton’s method (QNM) to linearize the nonlinear equations. Finally, based on the theory of reproducing kernel method (RKM), a stable numerical scheme is proposed to resolve the linear equations. The reliability and efficiency are verified by numerical experiments. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2021.107751 |