A reproducing kernel method for nonlinear C-q-fractional IVPs

Here a scheme for solving the Caputo type q-fractional (C-q-fractional) initial value problems (IVPs) in reproducing kernel spaces is given. By the attribute of the q-fractional operator, we first convert the q-fractional differential problems into q-fractional Volterra integral problems. Then, we i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2022-03, Vol.125, p.107751, Article 107751
Hauptverfasser: Yu, Yue, Niu, Jing, Zhang, Jian, Ning, Siyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here a scheme for solving the Caputo type q-fractional (C-q-fractional) initial value problems (IVPs) in reproducing kernel spaces is given. By the attribute of the q-fractional operator, we first convert the q-fractional differential problems into q-fractional Volterra integral problems. Then, we implement the Quasi-Newton’s method (QNM) to linearize the nonlinear equations. Finally, based on the theory of reproducing kernel method (RKM), a stable numerical scheme is proposed to resolve the linear equations. The reliability and efficiency are verified by numerical experiments.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2021.107751