High-dimensional vector solitons for a variable-coefficient partially nonlocal coupled Gross–Pitaevskii equation in a harmonic potential

A (3+1)-dimensional variable-coefficient partially nonlocal coupled Gross–Pitaevskii equation trapped in a harmonic potential becomes a focus of this paper. A counterpart of this variable-coefficient coupled equation is found as a (2+1)-dimensional constant-coefficient single nonlinear Schrödinger e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2022-02, Vol.124, p.107701, Article 107701
Hauptverfasser: Zhu, Hai-Ping, Xu, Yun-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A (3+1)-dimensional variable-coefficient partially nonlocal coupled Gross–Pitaevskii equation trapped in a harmonic potential becomes a focus of this paper. A counterpart of this variable-coefficient coupled equation is found as a (2+1)-dimensional constant-coefficient single nonlinear Schrödinger equation via the reduction procedure. By solutions of constant-coefficient single equation via the Hirota method, and from this counterpart, analytical high-dimensional vector soliton solutions with the Hermite–Gaussian envelope of the variable-coefficient coupled equation are deduced. Expanded behaviors of high-dimensional vector solitons emerge in the exponential diffraction decreasing system.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2021.107701