A second order, linear, unconditionally stable, Crank–Nicolson–Leapfrog scheme for phase field models of two-phase incompressible flows
In this article we propose a second order, linear, unconditionally stable, implicit–explicit scheme based on the Crank–Nicolson–Leapfrog discretization and the artificial compression method for solving phase field models of two-phase incompressible flows. We show that the scheme is unconditionally l...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2020-10, Vol.108, p.106521, Article 106521 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we propose a second order, linear, unconditionally stable, implicit–explicit scheme based on the Crank–Nicolson–Leapfrog discretization and the artificial compression method for solving phase field models of two-phase incompressible flows. We show that the scheme is unconditionally long-time stable. Numerical examples are provided to demonstrate the accuracy and long-time stability. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2020.106521 |