The solitary wave solutions of the nonlinear perturbed shallow water wave model
In this paper, we study the nonlinear perturbed shallow water wave model, which satisfies the asymptotic integrability condition with this family: the KdV equation, Camassa–Holm equation and Degasperis–Procesi equation. We establish the existence of solitary wave solutions for the perturbed nonlinea...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2020-05, Vol.103, p.106202, Article 106202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the nonlinear perturbed shallow water wave model, which satisfies the asymptotic integrability condition with this family: the KdV equation, Camassa–Holm equation and Degasperis–Procesi equation. We establish the existence of solitary wave solutions for the perturbed nonlinear dispersive equations by means of the geometric singular perturbation and invariant manifold theory. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2019.106202 |