The solitary wave solutions of the nonlinear perturbed shallow water wave model

In this paper, we study the nonlinear perturbed shallow water wave model, which satisfies the asymptotic integrability condition with this family: the KdV equation, Camassa–Holm equation and Degasperis–Procesi equation. We establish the existence of solitary wave solutions for the perturbed nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2020-05, Vol.103, p.106202, Article 106202
Hauptverfasser: Ge, Jianjiang, Du, Zengji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the nonlinear perturbed shallow water wave model, which satisfies the asymptotic integrability condition with this family: the KdV equation, Camassa–Holm equation and Degasperis–Procesi equation. We establish the existence of solitary wave solutions for the perturbed nonlinear dispersive equations by means of the geometric singular perturbation and invariant manifold theory.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2019.106202