The Laurent–Horner method for validated evaluation of Chebyshev expansions
We develop a simple two-step algorithm for enclosing Chebyshev expansions whose cost is linear in terms of the polynomial degree. The algorithm first transforms the expansion from Chebyshev to the Laurent basis and then applies the interval Horner method. It outperforms the existing eigenvalue-based...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2020-04, Vol.102, p.106113, Article 106113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a simple two-step algorithm for enclosing Chebyshev expansions whose cost is linear in terms of the polynomial degree. The algorithm first transforms the expansion from Chebyshev to the Laurent basis and then applies the interval Horner method. It outperforms the existing eigenvalue-based methods if the degree is high or the evaluation point is close to the boundaries of the domain. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2019.106113 |