A new Mean Preserving Moving Least Squares method for Arbitrary Order Finite Volume schemes
In this paper we propose a new arbitrary-order Finite Volume method for the numerical solution of the Euler and Navier-Stokes equations on unstructured grids. Arbitrary order is achieved using a modified Moving Least Squares reconstruction, which preserves the mean values of the conservative variabl...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2023-04, Vol.443, p.127768, Article 127768 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we propose a new arbitrary-order Finite Volume method for the numerical solution of the Euler and Navier-Stokes equations on unstructured grids. Arbitrary order is achieved using a modified Moving Least Squares reconstruction, which preserves the mean values of the conservative variables. Hence, the proposed scheme changes the traditional error functional of the MLS reconstruction in order to compare the cell-averaged values. Several benchmark problems are used to assess the proposed scheme’s accuracy and performance, to show that arbitrary order of convergence can be achieved. Furthermore, the proposed method is applied to the numerical solution of the Navier-Stokes equations and its ability to simulate turbulent flows is verified. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2022.127768 |