Multicolor bipartite Ramsey numbers for quadrilaterals and stars
For bipartite graphs H1,…,Hμ, μ≥2, the μ-color bipartite Ramsey number, denoted by Rb(H1,…,Hμ), is the least positive integer N such that if we arbitrarily color the edges of a complete bipartite graph KN,N with μ colors, then it contains a monochromatic copy of Hi in color i for some i, 1≤i≤μ. Let...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2023-02, Vol.438, p.127576, Article 127576 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For bipartite graphs H1,…,Hμ, μ≥2, the μ-color bipartite Ramsey number, denoted by Rb(H1,…,Hμ), is the least positive integer N such that if we arbitrarily color the edges of a complete bipartite graph KN,N with μ colors, then it contains a monochromatic copy of Hi in color i for some i, 1≤i≤μ. Let C4 and K1,n be a quadrilateral and a star on n+1 vertices, respectively. In this paper, we show that the (μ+1)-color bipartite Ramsey number Rb(C4,…,C4,K1,n)≤n+⌈12μ2(4n+μ2+2μ−7)+4⌉+μ2+μ2−1. Moreover, using algebraic methods, we construct Ramsey graphs or near Ramsey graphs and determine infinitely many values of Rb(C4,…,C4,K1,n), which reach the upper bound if μ=1,2 and are at most ⌊μ2⌋ less than the upper bound if μ≥3. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2022.127576 |