A meshless multi-symplectic local radial basis function collocation scheme for the “good” Boussinesq equation

•Systematic construction of novel meshless multi-symplectic method for the “good” Boussinesq equation.•Multi-symplectic integrators based on local radial basis function (RBF) collocation method (LRBFCM).•Discrete energy conservation and momentum conservation with a negligible error.•Meshless charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2022-10, Vol.431, p.127297, Article 127297
1. Verfasser: Zhang, Shengliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Systematic construction of novel meshless multi-symplectic method for the “good” Boussinesq equation.•Multi-symplectic integrators based on local radial basis function (RBF) collocation method (LRBFCM).•Discrete energy conservation and momentum conservation with a negligible error.•Meshless character and high-order approximation property of the method.•Overcoming the problems of ill-conditioning and shape parameter sensitivity of the global RBF collocation method. A novel meshless multi-symplectic scheme is proposed for the “good” Boussinesq equation. The scheme consists of a local radial basis function (RBF) collocation method (LRBFCS) in space and a symplectic integrator in time. The LRBFCS is simple and efficient, since only a sparse banded linear system has to be solved. Moreover, it can avoid the ill-conditioned problem and shape-parameter-sensitivity of the global RBF method. The multi-symplectic LRBFCS (MLRBFCS) is more accurate than traditional methods. Numerical experiments with uniform knots and random knots are designed to verify the effectiveness of the method.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2022.127297