A study of Liu-Storey conjugate gradient methods for vector optimization

•This work presents a study of Liu-Storey nonlinear conjugate gradient methods to solve vector optimization problems.•We test our proposed algorithms on a set of problems taken from the multiobjective optimization literature.•The Liu-Storey nonlinear conjugate gradient methods are efficient to find...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2022-07, Vol.425, p.127099, Article 127099
Hauptverfasser: Gonçalves, M.L.N., Lima, F.S., Prudente, L.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•This work presents a study of Liu-Storey nonlinear conjugate gradient methods to solve vector optimization problems.•We test our proposed algorithms on a set of problems taken from the multiobjective optimization literature.•The Liu-Storey nonlinear conjugate gradient methods are efficient to find critical Pareto points. This work presents a study of Liu-Storey (LS) nonlinear conjugate gradient (CG) methods to solve vector optimization problems. Three variants of the LS-CG method originally designed to solve single-objective problems are extended to the vector setting. The first algorithm restricts the LS conjugate parameter to be nonnegative and use a sufficiently accurate line search satisfying the (vector) standard Wolfe conditions. The second algorithm combines a modification in the LS conjugate parameter with a line search satisfying the (vector) strong Wolfe conditions. The third algorithm consists of a combination of the LS conjugate parameter with a new Armijo-type line search (to be proposed here for the vector setting). Global convergence results and numerical experiments are presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2022.127099