A study of Liu-Storey conjugate gradient methods for vector optimization
•This work presents a study of Liu-Storey nonlinear conjugate gradient methods to solve vector optimization problems.•We test our proposed algorithms on a set of problems taken from the multiobjective optimization literature.•The Liu-Storey nonlinear conjugate gradient methods are efficient to find...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2022-07, Vol.425, p.127099, Article 127099 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •This work presents a study of Liu-Storey nonlinear conjugate gradient methods to solve vector optimization problems.•We test our proposed algorithms on a set of problems taken from the multiobjective optimization literature.•The Liu-Storey nonlinear conjugate gradient methods are efficient to find critical Pareto points.
This work presents a study of Liu-Storey (LS) nonlinear conjugate gradient (CG) methods to solve vector optimization problems. Three variants of the LS-CG method originally designed to solve single-objective problems are extended to the vector setting. The first algorithm restricts the LS conjugate parameter to be nonnegative and use a sufficiently accurate line search satisfying the (vector) standard Wolfe conditions. The second algorithm combines a modification in the LS conjugate parameter with a line search satisfying the (vector) strong Wolfe conditions. The third algorithm consists of a combination of the LS conjugate parameter with a new Armijo-type line search (to be proposed here for the vector setting). Global convergence results and numerical experiments are presented. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2022.127099 |