Approximation by Kantorovich-type max-min operators and its applications

In this study, we construct Kantorovich variant of max-min kind operators, which are nonlinear. By using these new operators, we obtain some uniform approximation results in N-dimension (N≥1). Then, we estimate the error with the help of Hölder continuous functions and modulus of continuity. Further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2022-06, Vol.423, p.127011, Article 127011
Hauptverfasser: Gökçer, Türkan Yeliz, Aslan, İsmail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we construct Kantorovich variant of max-min kind operators, which are nonlinear. By using these new operators, we obtain some uniform approximation results in N-dimension (N≥1). Then, we estimate the error with the help of Hölder continuous functions and modulus of continuity. Furthermore, we give some illustrative applications to verify our theory and also investigate some shape-preserving properties of Kantorovich-type max-min Bernstein operator. Lastly, we examine the image processing implementation of our results via Kantorovich-type max-min Shepard operator.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2022.127011