A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces

The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H=diag(1,1,…,1,−1), the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2022-04, Vol.419, p.126853, Article 126853
Hauptverfasser: Xu, Wei-Ru, Bebiano, Natália, Chen, Guo-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H=diag(1,1,…,1,−1), the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H. In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2021.126853