Local metric dimension of graphs: Generalized hierarchical products and some applications

Let G be a graph and S⊆V(G). If every two adjacent vertices of G have different metric S-representations, then S is a local metric generator for G. A local metric generator of smallest order is a local metric basis for G, its order is the local metric dimension of G. Lower and upper bounds on the lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2020-01, Vol.364, p.124676, Article 124676
Hauptverfasser: Klavžar, Sandi, Tavakoli, Mostafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph and S⊆V(G). If every two adjacent vertices of G have different metric S-representations, then S is a local metric generator for G. A local metric generator of smallest order is a local metric basis for G, its order is the local metric dimension of G. Lower and upper bounds on the local metric dimension of the generalized hierarchical product are proved and demonstrated to be sharp. The results are applied to determine or bound the dimension of several graphs of importance in mathematical chemistry. Using the dimension, a new model for assigning codes to customers in delivery services is proposed.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2019.124676