Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation

We propose a novel parallel numerical algorithm for calculating the smallest eigenvalues of highly ill-conditioned Hankel matrices. It is based on the LDLT decomposition and involves finding a k × k sub-matrix of the inverse of the original N × N Hankel matrix HN−1. The computation involves extremel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2019-12, Vol.363, p.124628, Article 124628
Hauptverfasser: Chen, Yang, Sikorowski, Jakub, Zhu, Mengkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel parallel numerical algorithm for calculating the smallest eigenvalues of highly ill-conditioned Hankel matrices. It is based on the LDLT decomposition and involves finding a k × k sub-matrix of the inverse of the original N × N Hankel matrix HN−1. The computation involves extremely high precision arithmetic, message passing interface, and shared memory parallelisation. We demonstrate that this approach achieves good scalability on a high performance computing cluster (HPCC) which constitutes a major improvement of the earlier approaches. We use this method to study a family of Hankel matrices generated by the weight w(x)=e−xβ, supported on [0, ∞) and β > 0. Such weight generates a Hankel determinant, a fundamental object in random matrix theory. In the situation where β > 1/2, the smallest eigenvalue tends to 0 exponentially fast. If β 
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2019.124628