On the isometric version of Whitney's strong embedding theorem
We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any n-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2n-dimensional Euclidean sp...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2025-01, Vol.460, p.110040, Article 110040 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any n-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2n-dimensional Euclidean space, of Hölder class C1,θ with θ |
---|---|
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2024.110040 |