The average number of integral points on the congruent number curves
We show that the total number of non-torsion integral points on the elliptic curves ED:y2=x3−D2x, where D ranges over positive squarefree integers less than N, is O(N(logN)−14+ϵ). The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2024-11, Vol.457, p.109946, Article 109946 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the total number of non-torsion integral points on the elliptic curves ED:y2=x3−D2x, where D ranges over positive squarefree integers less than N, is O(N(logN)−14+ϵ). The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the 2-Selmer groups of the curves in this family. |
---|---|
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2024.109946 |