Invariants for Gromov's pyramids and their applications

Pyramids introduced by Gromov are generalized objects of metric spaces with Borel probability measures. We study non-trivial pyramids, where non-trivial means that they are not represented as metric measure spaces. In this paper, we establish general theory of invariants of pyramids and construct se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2024-04, Vol.442, p.109583, Article 109583
Hauptverfasser: Esaki, Syota, Kazukawa, Daisuke, Mitsuishi, Ayato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pyramids introduced by Gromov are generalized objects of metric spaces with Borel probability measures. We study non-trivial pyramids, where non-trivial means that they are not represented as metric measure spaces. In this paper, we establish general theory of invariants of pyramids and construct several invariants. Using them, we distinguish concrete pyramids. Furthermore, we study a space consisting of non-trivial pyramids and prove that the space have infinite dimension.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2024.109583