Nuclearity and Grothendieck-Lidskii formula for quaternionic operators

We introduce an appropriate notion of trace in the setting of quaternionic linear operators, arising from the well-known companion matrices. We then use this notion to define the quaternionic Fredholm determinant of trace-class operators in Hilbert spaces, and show that an analog of the classical Gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2024-04, Vol.442, p.109558, Article 109558
Hauptverfasser: Cerejeiras, P., Colombo, F., Debernardi Pinos, A., Kähler, U., Sabadini, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an appropriate notion of trace in the setting of quaternionic linear operators, arising from the well-known companion matrices. We then use this notion to define the quaternionic Fredholm determinant of trace-class operators in Hilbert spaces, and show that an analog of the classical Grothendieck-Lidskii formula, relating the trace of an operator with its eigenvalues, holds. We then extend these results to the so-called 23-nuclear (Fredholm) operators in the context of quaternionic locally convex spaces. While doing so, we develop some results in the theory of topological tensor products of noncommutative modules, and show that the trace defined ad hoc in terms of companion matrices, arises naturally as part of a canonical trace.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2024.109558