Euler characteristics of homogeneous and weighted-homogeneous hypersurfaces
Let k be a perfect field and let GW(k) be the Grothendieck-Witt ring of (virtual) non-degenerate symmetric bilinear forms over k. We develop methods for computing the quadratic Euler characteristic χ(X/k)∈GW(k) for X a smooth hypersurface in a projective space and in a weighted projective space. We...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2024-04, Vol.441, p.109556, Article 109556 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k be a perfect field and let GW(k) be the Grothendieck-Witt ring of (virtual) non-degenerate symmetric bilinear forms over k. We develop methods for computing the quadratic Euler characteristic χ(X/k)∈GW(k) for X a smooth hypersurface in a projective space and in a weighted projective space. We raise the question of a quadratic refinement of classical conductor formulas and find such a formula for the degeneration of a smooth hypersurface X in Pn+1 to the cone over a smooth hyperplane section of X; we also find a similar formula in the weighted homogeneous case. We formulate a conjecture for similar types of degenerations, and we interpret the quadratic conductor formulas in terms of Ayoub's motivic nearby cycles functor. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2024.109556 |