Euler characteristics of homogeneous and weighted-homogeneous hypersurfaces

Let k be a perfect field and let GW(k) be the Grothendieck-Witt ring of (virtual) non-degenerate symmetric bilinear forms over k. We develop methods for computing the quadratic Euler characteristic χ(X/k)∈GW(k) for X a smooth hypersurface in a projective space and in a weighted projective space. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2024-04, Vol.441, p.109556, Article 109556
Hauptverfasser: Levine, Marc, Pepin Lehalleur, Simon, Srinivas, Vasudevan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be a perfect field and let GW(k) be the Grothendieck-Witt ring of (virtual) non-degenerate symmetric bilinear forms over k. We develop methods for computing the quadratic Euler characteristic χ(X/k)∈GW(k) for X a smooth hypersurface in a projective space and in a weighted projective space. We raise the question of a quadratic refinement of classical conductor formulas and find such a formula for the degeneration of a smooth hypersurface X in Pn+1 to the cone over a smooth hyperplane section of X; we also find a similar formula in the weighted homogeneous case. We formulate a conjecture for similar types of degenerations, and we interpret the quadratic conductor formulas in terms of Ayoub's motivic nearby cycles functor.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2024.109556