t-quantized Cartan matrix and R-matrices for cuspidal modules over quiver Hecke algebras
As every simple module of a quiver Hecke algebra appears as the image of the R-matrix defined on the convolution product of certain cuspidal modules, knowing the Z-invariants of the R-matrices between cuspidal modules is quite significant. In this paper, we prove that the (q,t)-Cartan matrix special...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2024-04, Vol.441, p.109551, Article 109551 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As every simple module of a quiver Hecke algebra appears as the image of the R-matrix defined on the convolution product of certain cuspidal modules, knowing the Z-invariants of the R-matrices between cuspidal modules is quite significant. In this paper, we prove that the (q,t)-Cartan matrix specialized at q=1 of any finite type, called the t-quantized Cartan matrix, inform us of the invariants of R-matrices. To prove this, we use combinatorial AR-quivers associated with Dynkin quivers and their properties as crucial ingredients. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2024.109551 |