t-quantized Cartan matrix and R-matrices for cuspidal modules over quiver Hecke algebras

As every simple module of a quiver Hecke algebra appears as the image of the R-matrix defined on the convolution product of certain cuspidal modules, knowing the Z-invariants of the R-matrices between cuspidal modules is quite significant. In this paper, we prove that the (q,t)-Cartan matrix special...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2024-04, Vol.441, p.109551, Article 109551
Hauptverfasser: Kashiwara, Masaki, Oh, Se-jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As every simple module of a quiver Hecke algebra appears as the image of the R-matrix defined on the convolution product of certain cuspidal modules, knowing the Z-invariants of the R-matrices between cuspidal modules is quite significant. In this paper, we prove that the (q,t)-Cartan matrix specialized at q=1 of any finite type, called the t-quantized Cartan matrix, inform us of the invariants of R-matrices. To prove this, we use combinatorial AR-quivers associated with Dynkin quivers and their properties as crucial ingredients.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2024.109551