Partial Hasse invariants for Shimura varieties of Hodge-type

For a connected reductive group G over a finite field, we define partial Hasse invariants on the stack of G-zip flags. We obtain similar sections on the flag space of Shimura varieties of Hodge-type. They are mod p automorphic forms which cut out a single codimension one stratum. We study their prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2024-03, Vol.440, p.109518, Article 109518
Hauptverfasser: Imai, Naoki, Koskivirta, Jean-Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a connected reductive group G over a finite field, we define partial Hasse invariants on the stack of G-zip flags. We obtain similar sections on the flag space of Shimura varieties of Hodge-type. They are mod p automorphic forms which cut out a single codimension one stratum. We study their properties and show that such invariants admit a natural factorization through higher rank automorphic vector bundles. We define the socle of an automorphic vector bundle, and show that partial Hasse invariants lie in this socle.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2024.109518