Partial Hasse invariants for Shimura varieties of Hodge-type
For a connected reductive group G over a finite field, we define partial Hasse invariants on the stack of G-zip flags. We obtain similar sections on the flag space of Shimura varieties of Hodge-type. They are mod p automorphic forms which cut out a single codimension one stratum. We study their prop...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2024-03, Vol.440, p.109518, Article 109518 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a connected reductive group G over a finite field, we define partial Hasse invariants on the stack of G-zip flags. We obtain similar sections on the flag space of Shimura varieties of Hodge-type. They are mod p automorphic forms which cut out a single codimension one stratum. We study their properties and show that such invariants admit a natural factorization through higher rank automorphic vector bundles. We define the socle of an automorphic vector bundle, and show that partial Hasse invariants lie in this socle. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2024.109518 |