A=U for cluster algebras from moduli spaces of G-local systems

For a finite-dimensional simple Lie algebra g admitting a non-trivial minuscule representation and a connected marked surface Σ with at least two marked points and no punctures, we prove that the cluster algebra Ag,Σ associated with the pair (g,Σ) coincides with the upper cluster algebra Ug,Σ. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2023-10, Vol.431, p.109256, Article 109256
Hauptverfasser: Ishibashi, Tsukasa, Oya, Hironori, Shen, Linhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a finite-dimensional simple Lie algebra g admitting a non-trivial minuscule representation and a connected marked surface Σ with at least two marked points and no punctures, we prove that the cluster algebra Ag,Σ associated with the pair (g,Σ) coincides with the upper cluster algebra Ug,Σ. The proof is based on the fact that the function ring O(AG,Σ×) of the moduli space of decorated twisted G-local systems on Σ is generated by matrix coefficients of Wilson lines introduced in [23]. As an application, we prove that the Muller-type skein algebras Sg,Σ[∂−1][32,24,25] for g=sl2,sl3, or sp4 are isomorphic to the cluster algebras Ag,Σ.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.109256