Groupoids and skeletal categories form a pretorsion theory in Cat
We describe a pretorsion theory in the category Cat of small categories: the torsion objects are the groupoids, while the torsion-free objects are the skeletal categories, i.e., those categories in which every isomorphism is an automorphism. We infer these results from two unexpected properties of c...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2023-08, Vol.426, p.109110, Article 109110 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a pretorsion theory in the category Cat of small categories: the torsion objects are the groupoids, while the torsion-free objects are the skeletal categories, i.e., those categories in which every isomorphism is an automorphism. We infer these results from two unexpected properties of coequalizers in Cat that identify pairs of objects: they are faithful and reflect isomorphisms. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2023.109110 |