Bounded composition operators on functional quasi-Banach spaces and stability of dynamical systems

In this paper, we investigate the boundedness of composition operators defined on a quasi-Banach space continuously included in the space of smooth functions on a manifold. We prove that the boundedness of a composition operator strongly limits the behavior of the original map, and it provides an ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2023-07, Vol.424, p.109048, Article 109048
1. Verfasser: Ishikawa, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the boundedness of composition operators defined on a quasi-Banach space continuously included in the space of smooth functions on a manifold. We prove that the boundedness of a composition operator strongly limits the behavior of the original map, and it provides an effective method to investigate the properties of composition operators using the theory of dynamical system. Consequently, we prove that only affine maps can induce bounded composition operators on any quasi-Banach space continuously included in the space of entire functions of one variable if the function space contains a nonconstant function. We also prove that any polynomial automorphisms except affine transforms cannot induce bounded composition operators on a quasi-Banach space composed of entire functions in the two-dimensional complex affine space under several mild conditions.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.109048