Daugavet property of Banach algebras of holomorphic functions and norm-attaining holomorphic functions

We show that the duals of Banach algebras of scalar-valued bounded holomorphic functions on the open unit ball BE of a Banach space E lack weak⁎-strongly exposed points. Consequently, we obtain that some Banach algebras of holomorphic functions on an arbitrary Banach space have the Daugavet property...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2023-05, Vol.421, p.109005, Article 109005
1. Verfasser: Jung, Mingu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the duals of Banach algebras of scalar-valued bounded holomorphic functions on the open unit ball BE of a Banach space E lack weak⁎-strongly exposed points. Consequently, we obtain that some Banach algebras of holomorphic functions on an arbitrary Banach space have the Daugavet property which extends the observation of P. Wojtaszczyk [56]. Moreover, we present a new denseness result by proving that the set of norm-attaining vector-valued holomorphic functions on the open unit ball of a dual Banach space is dense provided that its predual space has the metric π-property. Besides, we obtain several equivalent statements for the Banach space of vector-valued homogeneous polynomials to be reflexive, which improves the result of J. Mujica [47], J. A. Jaramillo and L. A. Moraes [39]. As a byproduct, we generalize some results on polynomial reflexivity due to J. Farmer [35].
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.109005