The entropy of Ricci flows with Type-I scalar curvature bounds

In this paper, we extend the theory of Ricci flows satisfying a Type-I scalar curvature bound at a finite-time singularity. In [2], Bamler showed that a Type-I rescaling procedure will produce a singular shrinking gradient Ricci soliton with singularities of codimension 4. We prove that the entropy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2023-04, Vol.418, p.108940, Article 108940
1. Verfasser: Hallgren, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we extend the theory of Ricci flows satisfying a Type-I scalar curvature bound at a finite-time singularity. In [2], Bamler showed that a Type-I rescaling procedure will produce a singular shrinking gradient Ricci soliton with singularities of codimension 4. We prove that the entropy of a conjugate heat kernel based at the singular time converges to the soliton entropy of the singular soliton, and use this to characterize the singular set of the Ricci flow solution in terms of a heat kernel density function. This generalizes results previously only known with the stronger assumption of a Type-I curvature bound. We also show that in dimension 4, the singular Ricci soliton is smooth away from finitely many points, which are conical smooth orbifold singularities.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.108940