Affine nil-Hecke algebras and quantum cohomology
Let G be a compact, connected Lie group and T⊂G a maximal torus. Let (M,ω) be a monotone closed symplectic manifold equipped with a Hamiltonian action of G. We construct a module action of the affine nil-Hecke algebra Hˆ⁎S1×T(LG/T) on the S1×T-equivariant quantum cohomology of M, QHS1×T⁎(M). Our con...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2023-02, Vol.415, p.108867, Article 108867 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a compact, connected Lie group and T⊂G a maximal torus. Let (M,ω) be a monotone closed symplectic manifold equipped with a Hamiltonian action of G. We construct a module action of the affine nil-Hecke algebra Hˆ⁎S1×T(LG/T) on the S1×T-equivariant quantum cohomology of M, QHS1×T⁎(M). Our construction generalizes the theory of shift operators for Hamiltonian torus actions [46,40]. We show that, as in the abelian case, this action behaves well with respect to the quantum connection. As an application of our construction, we show that the G-equivariant quantum cohomology QHG⁎(M) defines a canonical holomorphic Lagrangian subvariety LG(M)↪BFM(GC∨) in the BFM-space of the Langlands dual group, confirming an expectation of Teleman from [51]. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2023.108867 |