Multiplicative equivariant K-theory and the Barratt-Priddy-Quillen theorem

We prove a multiplicative version of the equivariant Barratt-Priddy-Quillen theorem, starting from the additive version proven in [13]. The proof uses a multiplicative elaboration of an additive equivariant infinite loop space machine that manufactures orthogonal G-spectra from symmetric monoidal G-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2023-02, Vol.414, p.108865, Article 108865
Hauptverfasser: Guillou, Bertrand J., May, J. Peter, Merling, Mona, Osorno, Angélica M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a multiplicative version of the equivariant Barratt-Priddy-Quillen theorem, starting from the additive version proven in [13]. The proof uses a multiplicative elaboration of an additive equivariant infinite loop space machine that manufactures orthogonal G-spectra from symmetric monoidal G-categories. The new machine produces highly structured associative ring and module G-spectra from appropriate multiplicative input. It relies on new operadic multicategories that are of considerable independent interest and are defined in a general, not necessarily equivariant or topological, context. Most of our work is focused on constructing and comparing them. We construct a multifunctor from the multicategory of symmetric monoidal G-categories to the multicategory of orthogonal G-spectra. With this machinery in place, we prove that the equivariant BPQ theorem can be lifted to a multiplicative equivalence. That is the heart of what is needed for the presheaf reconstruction of the category of G-spectra in [12].
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.108865