Multiplicative equivariant K-theory and the Barratt-Priddy-Quillen theorem
We prove a multiplicative version of the equivariant Barratt-Priddy-Quillen theorem, starting from the additive version proven in [13]. The proof uses a multiplicative elaboration of an additive equivariant infinite loop space machine that manufactures orthogonal G-spectra from symmetric monoidal G-...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2023-02, Vol.414, p.108865, Article 108865 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a multiplicative version of the equivariant Barratt-Priddy-Quillen theorem, starting from the additive version proven in [13]. The proof uses a multiplicative elaboration of an additive equivariant infinite loop space machine that manufactures orthogonal G-spectra from symmetric monoidal G-categories. The new machine produces highly structured associative ring and module G-spectra from appropriate multiplicative input. It relies on new operadic multicategories that are of considerable independent interest and are defined in a general, not necessarily equivariant or topological, context. Most of our work is focused on constructing and comparing them. We construct a multifunctor from the multicategory of symmetric monoidal G-categories to the multicategory of orthogonal G-spectra. With this machinery in place, we prove that the equivariant BPQ theorem can be lifted to a multiplicative equivalence. That is the heart of what is needed for the presheaf reconstruction of the category of G-spectra in [12]. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2023.108865 |