Weak convergence and spectrality of infinite convolutions

Let {Ak}k=1∞ be a sequence of finite subsets of Rd satisfying that #Ak≥2 for all integers k≥1. In this paper, we first give a sufficient and necessary condition for the existence of the infinite convolutionν=δA1⁎δA2⁎⋯⁎δAn⁎⋯, where all sets Ak⊆R+d and δA=1#A∑a∈Aδa. Then we study the spectrality of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-08, Vol.404, p.108425, Article 108425
Hauptverfasser: Li, Wenxia, Miao, Jun Jie, Wang, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let {Ak}k=1∞ be a sequence of finite subsets of Rd satisfying that #Ak≥2 for all integers k≥1. In this paper, we first give a sufficient and necessary condition for the existence of the infinite convolutionν=δA1⁎δA2⁎⋯⁎δAn⁎⋯, where all sets Ak⊆R+d and δA=1#A∑a∈Aδa. Then we study the spectrality of a class of infinite convolutions generated by Hadamard triples in R and construct a class of singular spectral measures without compact support. Finally we show that such measures are abundant, and the dimension of their supports has the intermediate-value property.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2022.108425