Weak convergence and spectrality of infinite convolutions
Let {Ak}k=1∞ be a sequence of finite subsets of Rd satisfying that #Ak≥2 for all integers k≥1. In this paper, we first give a sufficient and necessary condition for the existence of the infinite convolutionν=δA1⁎δA2⁎⋯⁎δAn⁎⋯, where all sets Ak⊆R+d and δA=1#A∑a∈Aδa. Then we study the spectrality of a...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2022-08, Vol.404, p.108425, Article 108425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {Ak}k=1∞ be a sequence of finite subsets of Rd satisfying that #Ak≥2 for all integers k≥1. In this paper, we first give a sufficient and necessary condition for the existence of the infinite convolutionν=δA1⁎δA2⁎⋯⁎δAn⁎⋯, where all sets Ak⊆R+d and δA=1#A∑a∈Aδa. Then we study the spectrality of a class of infinite convolutions generated by Hadamard triples in R and construct a class of singular spectral measures without compact support. Finally we show that such measures are abundant, and the dimension of their supports has the intermediate-value property. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2022.108425 |