The homology of SL2 of discrete valuation rings
Let A be a discrete valuation ring with field of fractions F and residue field k such that |k|≠2,3,4,5,7,8,9,16,27,32,64. We prove that there is a natural exact sequenceH3(SL2(A),Z[12])→H3(SL2(F),Z[12])→RP1(k)[12]→0, where RP1(k) is the refined scissors congruence group of k. Let Γ0(mA) denote the c...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2022-06, Vol.402, p.108313, Article 108313 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a discrete valuation ring with field of fractions F and residue field k such that |k|≠2,3,4,5,7,8,9,16,27,32,64. We prove that there is a natural exact sequenceH3(SL2(A),Z[12])→H3(SL2(F),Z[12])→RP1(k)[12]→0, where RP1(k) is the refined scissors congruence group of k. Let Γ0(mA) denote the congruence subgroup consisting of matrices in SL2(A) whose lower off-diagonal entry lies in the maximal ideal mA. We also prove that there is an exact sequence0→P‾(k)[12]→H2(Γ0(mA),Z[12])→H2(SL2(A),Z[12])→I2(k)[12]→0, where I2(k) is the second power of the fundamental ideal of the Grothendieck-Witt ring GW(k) and P‾(k) is a certain quotient of the scissors congruence group (in the sense of Dupont-Sah) P(k) of k. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2022.108313 |