The homology of SL2 of discrete valuation rings

Let A be a discrete valuation ring with field of fractions F and residue field k such that |k|≠2,3,4,5,7,8,9,16,27,32,64. We prove that there is a natural exact sequenceH3(SL2(A),Z[12])→H3(SL2(F),Z[12])→RP1(k)[12]→0, where RP1(k) is the refined scissors congruence group of k. Let Γ0(mA) denote the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-06, Vol.402, p.108313, Article 108313
Hauptverfasser: Hutchinson, Kevin, Mirzaii, Behrooz, Mokari, Fatemeh Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a discrete valuation ring with field of fractions F and residue field k such that |k|≠2,3,4,5,7,8,9,16,27,32,64. We prove that there is a natural exact sequenceH3(SL2(A),Z[12])→H3(SL2(F),Z[12])→RP1(k)[12]→0, where RP1(k) is the refined scissors congruence group of k. Let Γ0(mA) denote the congruence subgroup consisting of matrices in SL2(A) whose lower off-diagonal entry lies in the maximal ideal mA. We also prove that there is an exact sequence0→P‾(k)[12]→H2(Γ0(mA),Z[12])→H2(SL2(A),Z[12])→I2(k)[12]→0, where I2(k) is the second power of the fundamental ideal of the Grothendieck-Witt ring GW(k) and P‾(k) is a certain quotient of the scissors congruence group (in the sense of Dupont-Sah) P(k) of k.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2022.108313