The Heisenberg calculus, index theory and cyclic cohomology

A hypoelliptic operator in the Heisenberg calculus on a compact contact manifold is a Fredholm operator. Its symbol determines an element in the K-theory of the noncommutative algebra of Heisenberg symbols. We construct a periodic cyclic cocycle which, when paired with the Connes-Chern character of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-04, Vol.399, p.108229, Article 108229
Hauptverfasser: Gorokhovsky, Alexander, van Erp, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hypoelliptic operator in the Heisenberg calculus on a compact contact manifold is a Fredholm operator. Its symbol determines an element in the K-theory of the noncommutative algebra of Heisenberg symbols. We construct a periodic cyclic cocycle which, when paired with the Connes-Chern character of the principal Heisenberg symbol, calculates the index. Our index formula is local, i.e. given as a local expression in terms of the principal symbol of the operator and a connection on TM and its curvature. We prove our index formula by reduction to Boutet de Monvel's index theorem for Toeplitz operators.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2022.108229