The Heisenberg calculus, index theory and cyclic cohomology
A hypoelliptic operator in the Heisenberg calculus on a compact contact manifold is a Fredholm operator. Its symbol determines an element in the K-theory of the noncommutative algebra of Heisenberg symbols. We construct a periodic cyclic cocycle which, when paired with the Connes-Chern character of...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2022-04, Vol.399, p.108229, Article 108229 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hypoelliptic operator in the Heisenberg calculus on a compact contact manifold is a Fredholm operator. Its symbol determines an element in the K-theory of the noncommutative algebra of Heisenberg symbols. We construct a periodic cyclic cocycle which, when paired with the Connes-Chern character of the principal Heisenberg symbol, calculates the index. Our index formula is local, i.e. given as a local expression in terms of the principal symbol of the operator and a connection on TM and its curvature. We prove our index formula by reduction to Boutet de Monvel's index theorem for Toeplitz operators. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2022.108229 |