Jensen polynomials for the Riemann xi-function
We investigate ξ(s)=12s(s−1)π−s2Γ(s2)ζ(s), where ζ(s) is the Riemann zeta function. The Riemann hypothesis (RH) asserts that if ξ(s)=0, then Re(s)=12. Pólya proved that RH is equivalent to the hyperbolicity of the Jensen polynomials Jd,n(X) constructed from certain Taylor coefficients of ξ(s). For e...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2022-03, Vol.397, p.108186, Article 108186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate ξ(s)=12s(s−1)π−s2Γ(s2)ζ(s), where ζ(s) is the Riemann zeta function. The Riemann hypothesis (RH) asserts that if ξ(s)=0, then Re(s)=12. Pólya proved that RH is equivalent to the hyperbolicity of the Jensen polynomials Jd,n(X) constructed from certain Taylor coefficients of ξ(s). For each d≥1, recent work proves that Jd,n(X) is hyperbolic for sufficiently large n. In this paper, we make this result effective. Moreover, we show how the low-lying zeros of the derivatives ξ(n)(s) influence the hyperbolicity of Jd,n(X). |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2022.108186 |