Jensen polynomials for the Riemann xi-function

We investigate ξ(s)=12s(s−1)π−s2Γ(s2)ζ(s), where ζ(s) is the Riemann zeta function. The Riemann hypothesis (RH) asserts that if ξ(s)=0, then Re(s)=12. Pólya proved that RH is equivalent to the hyperbolicity of the Jensen polynomials Jd,n(X) constructed from certain Taylor coefficients of ξ(s). For e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-03, Vol.397, p.108186, Article 108186
Hauptverfasser: Griffin, Michael J., Ono, Ken, Rolen, Larry, Thorner, Jesse, Tripp, Zachary, Wagner, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate ξ(s)=12s(s−1)π−s2Γ(s2)ζ(s), where ζ(s) is the Riemann zeta function. The Riemann hypothesis (RH) asserts that if ξ(s)=0, then Re(s)=12. Pólya proved that RH is equivalent to the hyperbolicity of the Jensen polynomials Jd,n(X) constructed from certain Taylor coefficients of ξ(s). For each d≥1, recent work proves that Jd,n(X) is hyperbolic for sufficiently large n. In this paper, we make this result effective. Moreover, we show how the low-lying zeros of the derivatives ξ(n)(s) influence the hyperbolicity of Jd,n(X).
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2022.108186