The Chern character of ϑ-summable Fredholm modules over dg algebras and localization on loop space
We introduce the notion of a ϑ-summable Fredholm module over a locally convex dg algebra Ω and construct its Chern character as a cocycle on the entire cyclic complex of Ω, extending the construction of Jaffe, Lesniewski and Osterwalder to a differential graded setting. Using this Chern character, w...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2022-02, Vol.395, p.108143, Article 108143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of a ϑ-summable Fredholm module over a locally convex dg algebra Ω and construct its Chern character as a cocycle on the entire cyclic complex of Ω, extending the construction of Jaffe, Lesniewski and Osterwalder to a differential graded setting. Using this Chern character, we prove an index theorem involving an abstract version of a Bismut-Chern character constructed by Getzler, Jones and Petrack in the context of loop spaces. Our theory leads to a rigorous construction of the path integral for N=1/2 supersymmetry which satisfies a Duistermaat-Heckman type localization formula on loop space. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2021.108143 |