The Chern character of ϑ-summable Fredholm modules over dg algebras and localization on loop space

We introduce the notion of a ϑ-summable Fredholm module over a locally convex dg algebra Ω and construct its Chern character as a cocycle on the entire cyclic complex of Ω, extending the construction of Jaffe, Lesniewski and Osterwalder to a differential graded setting. Using this Chern character, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-02, Vol.395, p.108143, Article 108143
Hauptverfasser: Güneysu, Batu, Ludewig, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of a ϑ-summable Fredholm module over a locally convex dg algebra Ω and construct its Chern character as a cocycle on the entire cyclic complex of Ω, extending the construction of Jaffe, Lesniewski and Osterwalder to a differential graded setting. Using this Chern character, we prove an index theorem involving an abstract version of a Bismut-Chern character constructed by Getzler, Jones and Petrack in the context of loop spaces. Our theory leads to a rigorous construction of the path integral for N=1/2 supersymmetry which satisfies a Duistermaat-Heckman type localization formula on loop space.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.108143