Complete logarithmic Sobolev inequalities via Ricci curvature bounded below

We prove that for a symmetric Markov semigroup, Ricci curvature bounded from below by a non-positive constant combined with a finite L∞-mixing time implies the modified log-Sobolev inequality. Such L∞-mixing time estimates always hold for Markov semigroups that have spectral gap and finite Varopoulo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-01, Vol.394, p.108129, Article 108129
Hauptverfasser: Brannan, Michael, Gao, Li, Junge, Marius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for a symmetric Markov semigroup, Ricci curvature bounded from below by a non-positive constant combined with a finite L∞-mixing time implies the modified log-Sobolev inequality. Such L∞-mixing time estimates always hold for Markov semigroups that have spectral gap and finite Varopoulos dimension. Our results apply to non-ergodic quantum Markov semigroups with noncommutative Ricci curvature bounds recently introduced by Carlen and Maas. As an application, we prove that the heat semigroup on a compact Riemannian manifold admits a uniform modified log-Sobolev inequality for all its matrix-valued extensions.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.108129